
Changes in the Atmospheric
Greenhouse Effect during 1985 to 1999

Robert D. Cess and Petra M. Udelhofen
Marine Sciences Research Center

State University of NY at Stony Brook

CERES Science Team Meeting
May 14 to 16, 2002



Approach

Initially use the ERBE WFOV 15-year (1985-
1999) measurements, with restriction to 40OS
to 40ON, together with International Satellite
Cloud Climatology Project (ISCCP) cloud
fraction measurements.

But to better understand what we might
anticipate, we first examine output from the
NCAR Community Climate System Model for
the last 29 years of a 1870-1998 simulation
with increasing greenhouse gases.



Interpretation of the NCAR CCSM Results

Consider climate change induced by a

radiative forcing G, and let ∆R denote the

radiative response to that forcing.  Also let

∆ASW denote the change in absorbed SW

radiation by the climate system.  From a

TOA energy balance applied to a closed

system (global mean):

∆NET = ∆ASW - ∆OLR = G - ∆R

For a change from one equilibrium climate

state to another, ∆NET = 0 and ∆R = G.

But for a time-dependent forcing, ∆R lags G

(∆R < G) because of the heat capacity of

the oceans, and ∆NET > 0.

Caveat:  When considering 40OS to 40ON,

changes in poleward transport could impact

∆NET.



Surface-atmosphere emissivity

TOA

Surface

OLR

Emissivity = OLR/σT
s

4

A decrease in emissivity corresponds to an
increase in the greenhouse effect, and vice versa.
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Conclusions
The strong OLR anomaly appears to be real,

and there is evidence that, to first order, it

is caused by a related change in cloud

fraction which could be the result of:

1. A cloud response to greenhouse-gas

warming (probably unlikely).

2. Or, a cyclical phenomenon (more likely).

In either event, the NCAR CCSM (coupled

atmosphere/ocean GCM) does not produce

the OLR anomaly, nor do a suite of

atmospheric GCMs that employ prescribed

SSTs (Wielicki et al., 2002).


